

Load Duration Curve Review – 2002 to 2020

Max Schuler

Demand Forecasting & Analysis

Load Forecasting Task Force

May 24, 2021, Teleconference

Load Duration Curve (LDC)

 A load duration curve shows per-unit load values by ranked day or hour

 Per-unit load values are daily or hourly MW values expressed as a percentage of the summer peak MW value

Analysis Summary

• Load Duration Curve (LDC) Analysis for 2002 to 2020 summers

- All analysis performed at the system level
- 2003 excluded due to the blackout
- Daily LDCs Comparison of earlier (2002–2011) and more recent (2012-2020) summers
- Daily LDCs Comparison of steeper and flatter load duration curves
- Daily LDCs Comparison of load duration curves between hotter and cooler summers, determined by peak day Cumulative Temperature & Humidity Index (CTHI)
- Hourly LDCs Comparison of earlier and more recent summers
- Comparison of Daily LDCs against Hourly LDCs
- LDC Coefficient of Variation (CV) summary of variability in loads across ranked summer hours

- Per-unit loads (relative to annual peak) of top 30 days
- Three averages were calculated: 2002-2011, 2012-2020, and 2002-2020. All are fairly similar

- 2002, 2004 and 2005 have a higher number of near peak load days – fairly flat LDCs
- 2006 and 2011 are steep, with sharp declines in the near peak days
- 2007, 2008, 2009 and 2010 are close to the average

- 2013 is very steep, with sharp declines in the near peak days
- 2019 is generally
 near to slightly
 above average across
 the top 30 days
- 2020 is generally near to slightly below average across the top 30 days

- 2002 through 2005 are generally above average (flatter LDCs)
- 2006, 2011 and 2013 are significantly below average (steeper LDCs)
- 2014 through 2019 are generally above average
- 2020 is fairly close to average

2002, 2005, and 2015-2018 are the six summers with the flattest load duration curves based on the load factor over the first ten days

The average of this subset (shown in red) is higher than the overall average (shown in black)

2004, 2007, 2012, 2014, 2016 and 2020 are the six middle ranked LDCs based on the load factor over the first ten days

The average of this subset (shown in yellow) is higher than the overall average (shown in black), suggesting some skewness in the overall distribution

2006, 2008-2011 and 2013 are the six bottom ranked LDCs based on the load factor over the first ten days

- The average of this subset (shown in blue) is significantly lower than the overall average (shown in black)
- There is a much greater difference relative to the typical LDC

Annual Load Duration Curve and Peak Weather Metrics with Rankings						
	10-day	Peak Day	Peak MW	Rank Load		
Year	Load Factor	СТНІ	(incl DR)	Factor	Rank CTHI	Rank MW
2002	0.974	83.03	31,142	2	11	11
2004	0.963	81.40	28,433	8	16	18
2005	0.974	82.92	32,071	1	13	10
2006	0.915	87.60	34,686	17	2	3
2007	0.965	82.00	32,169	7	15	9
2008	0.926	84.61	32,432	15	6	6
2009	0.946	82.27	30,844	13	14	14
2010	0.932	86.70	33,839	14	3	4
2011	0.895	87.74	35,262	18	1	1
2012	0.947	83.26	33,186	12	10	5
2013	0.919	86.56	34,729	16	4	2
2014	0.961	80.54	29,782	9	17	16
2015	0.966	82.95	31,138	6	12	12
2016	0.949	83.41	32,282	10	9	7
2017	0.972	80.38	29,699	3	18	17
2018	0.971	84.59	32,280	4	7	8
2019	0.966	84.96	30,480	5	5	15
2020	0.947	83.56	31,037	11	8	13

- Comparison of the load duration curve to the peak weather and load for that year
- Hot summers (CTHI above the 70th percentile) are shaded in red; cool summers (CTHI below the 30th percentile) are shaded in blue
- The three steepest load duration curves are from the four hottest summers and the three highest peak load days
- A steep load duration curve is most characteristic of load behavior during summers with extreme peak day heat

- There is a significant negative correlation between peak day weather and flatness of the load duration curve
 - Years with flatter LDCs represent summers with typical or cooler peak weather

©COPYRIGHT NYISO 2021. ALL RIGHTS RESERVED

2006, 2010, 2011 and 2013 are the four summers with significantly hotter than normal peakproducing weather conditions

- The average of this subset is significantly lower than the overall average across all years
- These curves better represent expected load behavior applicable to the upper bin LFU multipliers (bins 1 to 3)

New York ISO

2004, 2007, 2009, 2014 and 2017 are the five summers with significantly cooler than normal peak-producing weather conditions

•

•

.

- The average of this subset is slightly higher than the overall average across all years
- These curves better represent expected load behavior applicable to the lower bin LFU multipliers (bins 5 to 7)

New York ISO

This graph shows the LDCs for the remaining summer with near-normal peak day weather (peak day CTHI between the 30th and 70th percentiles)

 The average of this subset is slightly higher than the overall average across all years, and fairly similar to the average for cool summers

- This graph shows the hourly LDCs for all summers in the analysis. The top 100 summer hours are shown
- These LDCs are comparatively similar to the daily LDCs across years

- This graph shows the hourly LDCs for 2002-2011. The top 100 summer hours are shown
- The average of this subset is similar to the overall average

- This graph shows the hourly LDCs for 2012-2020. The top 100 summer hours are shown
- The average of this subset is similar to the overall average

Annual Load Duration Curve Metrics with Rankings							
	Peak Day	10-day	50-hour		Rank Day	Rank Hour	
Year	СТНІ	Load Factor	Load Factor	Rank CTHI	Load Factor	Load Factor	
2002	83.03	0.974	0.968	11	2	1	
2004	81.40	0.963	0.956	16	8	9	
2005	82.92	0.974	0.968	13	1	2	
2006	87.60	0.915	0.937	2	17	15	
2007	82.00	0.965	0.962	15	7	6	
2008	84.61	0.926	0.932	6	15	17	
2009	82.27	0.946	0.955	14	13	10	
2010	86.70	0.932	0.934	3	14	16	
2011	87.74	0.895	0.904	1	18	18	
2012	83.26	0.947	0.939	10	12	14	
2013	86.56	0.919	0.941	4	16	13	
2014	80.54	0.961	0.960	17	9	8	
2015	82.95	0.966	0.962	12	6	7	
2016	83.41	0.949	0.945	9	10	11	
2017	80.38	0.972	0.967	18	3	3	
2018	84.59	0.971	0.964	7	4	5	
2019	84.96	0.966	0.966	5	5	4	
2020	83.56	0.947	0.943	8	11	12	

Rankings for the hourly load duration curves are generally similar to the rankings for the daily LDCs

•

•

Hot summers (CTHI above the 70th percentile) are shaded in red; cool summers (CTHI below the 30th percentile) are shaded in blue

There is a very strong positive correlation between daily and hourly load duration curve load factors

New York ISO

- This graph shows all June to September hourly summer loads by year, relative to average
- There is significantly more variation in the upper load tail relative to the rest of the summer hours

- This graph zooms in to show the top 1,000 hourly summer loads by year, relative to the June to September hourly average
- The variation in hourly loads decreases significantly across the top 1,000 hours

- This graph shows the hourly per-unit coefficient of variation of load sorted by hourly load rank
- The Coefficient of Variation (CV) is the standard deviation divided by the average
- There is a significant drop off in variability over the top 100 ranked summer hours

Hour Rank	Per-Unit CV		
Peak Hour	100%		
Hour 10	93%		
Hour 20	77%		
Hour 30	74%		
Hour 50	62%		
Hour 100	47%		
Hour 200	36%		
Hour 300	30%		
Hour 500	25%		
Hour 1000	21%		

 These figures show the variation in ranked hour load as a percentage of the variation in the single peak load hour, on average across the 2002 through 2020 summers

Key Takeaways

- 2019 and 2020 are both fairly typical from a load duration curve perspective
- Years with significantly hot peak-producing weather (analogous to Bin 1 to Bin 3 LFU temperatures) have very steep load duration curves
- There is a very strong correlation between daily and hourly load duration curve results
- The variability in hourly load declines quickly and significantly as you move down the ranked hours of the load duration curve

Questions?

Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system

